
• File Organization:

• Indexed sequential access files;

• implementation using B & B++ trees,

• hashing,

• hashing functions,

• collision resolution,

• extendible hashing,

• dynamic hashing approach implementation and
performance

UNIT-III

UNIT-III File Organization

What is File Organization?
•File Organization in DBMS means the way records (data) are stored in a file on disk.
•It defines how data is arranged, accessed, and updated.
•Good file organization improves speed of data retrieval and efficient storage.

UNIT-III File Organization

File Organization Types
File Organization = The way data records are stored on storage media.
Main types:

Types of File
Organization

1.Heap (or Pile)File Organization

2.Sequential File Organization

3.Indexed Sequential File Organization
(ISAM)

4.Direct (or Hashed) File Organization

UNIT-III File Organization

1. Heap (or Pile) File Organization
•Records are stored wherever space is available — no order at all.
•Also called Unordered File Organization.

 Working
•New records simply appended (add) to the end of file or in any free
block.
•Searching = scan entire file (slow).

 Diagram

[RecC] [RecA] [RecB] [RecE] [RecD] (no order)
Advantage: Simple, fast insertion.
Disadvantage: Very slow searching and deletion.

UNIT-III File Organization

2.Sequential File Organization means storing records one after another in a specific
sequence — either in the order they were entered or sorted by a key field (like Roll
No or Employee ID).

Emp_ID Name Salary

101 Aditi 50000

102 Rajesh 48000

103 Neha 52000

•Stored sequentially by Emp_ID.

•To find Emp_ID = 103, DBMS scans record 101 → 102 → 103.

UNIT-III File Organization

UNIT-III File Organization

Advantages
•Simple to implement.
•Fast for sequential access (batch operations).

Disadvantages
•Slow random access — must scan sequentially.
•Costly insertions/deletions — may need reorganization.

UNIT-III File Organization

Indexed Sequential File Organization
•Records (data) are stored in order (sequentially) based on a key field (like Roll No or Account No).
•But there is also an index — a small table that helps find records faster.
 It’s a combination of:
•Sequential file (records arranged in order)
•Index file (used for fast searching)

RollNo Name Marks

101 Ravi 80

102 Sita 90

103 Aman 85

104 Neha 95

RollNo Address (Pointer)

101 001

103 003

Records are stored in order of RollNo.
An index file keeps key pointers, e.g.:

Now, if you want to find RollNo 103:
•Instead of reading all records one by one,
•The system uses the index to jump directly to record 103

UNIT-III File Organization

Advantages
•Faster access than pure sequential files (thanks to index).
•Allows both sequential and direct/random access.

Disadvantages
•Extra storage needed for the index.
•Maintenance overhead (index must be updated on insertion/deletion).

4.In Direct (or Hash) File Organization, a hashing function is used to calculate the
address (or location) of a record directly from its key field.
•No sequential search
•No index table
•Directly compute storage location
This is the fastest method for random/direct access.

UNIT-III File Organization

Emp_ID Name Hash = Emp_ID % 10 Stored in Bucket (Address)

101 Aditi 1 1

104 Raj 4 4

117 Neha 7 7

125 Amit 5 5

How it Works:
If you want to find Emp_ID = 117,
The system does:
h(117) = 117 % 10 = 7

So it directly goes to bucket 7 and retrieves
Neha’s record — no searching, no index.

UNIT-III File Organization

Advantages
•Very fast random access (direct calculation of address).
•No need to scan sequentially or maintain index.

Disadvantages
•Collisions occur when multiple keys map to the same bucket.
•Not good for sequential processing (no order).

Collision:
Sometimes two keys give the same hash value.
Example:

Emp_ID = 105 → 105 % 10 = 5
Emp_ID = 125 → 125 % 10 = 5

Both go to bucket 5 → this is called a collision.

Solution: We use methods like:
•Chaining (overflow list) → store both records in
a linked list.
•Open addressing → find the next empty bucket.

UNIT-III File Organization

Feature Heap (Pile) Sequential Indexed Sequential Direct / Hash

Order of Records No order In sequence (by key) In sequence + Index
Address by Hash
Function

Insertion Fast (append anywhere)
Costly (maintain
order)

Moderate (with
overflow)

Fast (direct address)

Search Speed Slow (scan all)
Moderate (scan in
order)

Fast (via index)
Very fast (hash
lookup)

Random Access Poor Poor Good Excellent

Best For Temporary/log data Batch processing Mixed access Real-time lookups

B-Tree (Balanced Tree)
Definition
•A B-Tree is a self-balancing search tree.
•All leaves are at the same level.
•Nodes can have multiple keys and multiple children.
•Used to store index keys so that searches, insertions, and
deletions are efficient.

Structure of a B-Tree Node
•Contains keys (sorted)
•Contains pointers to child nodes
•Root node may also contain keys and pointers
Example (order = 3):

UNIT-III File Organization

UNIT-III File Organization

•The top row (root) has 3 keys: 3, 30, 60.

•Each key divides the tree into ranges.

•Numbers less than 3 go to the first child.

•Numbers between 3 and 30 go to the second

child.

•Numbers between 30 and 60 go to the third child.

•Numbers greater than 60 go to the fourth child.

•Children nodes (lower rows) store the actual data:

•First child → 1, 2

•Second child → 4, 5, 6

•Third child → 40, 50

•Fourth child → 70, 80, 90

B++ Tree
•A B++ Tree is a variant of the B-Tree(Improved version of B-Tree).
•In a B++ Tree, all data (records) are stored only at the leaf level (last level).
•Internal nodes store only keys (index), not actual data pointers.
•Leaf nodes are linked to make sequential access easy.

Structure of a B++ Tree Node
•Internal nodes = index keys only
•Leaf nodes = actual data pointers
•Leaves linked as a linked list

UNIT-III File Organization

UNIT-III File Organization

Insertion operation

The insertion to a B+ tree starts at a leaf node.
Step 1 − Calculate the maximum and minimum number of keys to be
added onto the B+ tree node.

UNIT-III File Organization

Step 2 − Insert the elements one by one accordingly into a leaf node until it exceeds the
maximum key number.

UNIT-III File Organization

Step 3 − The node is split into half where the left child consists of minimum
number of keys and the remaining keys are stored in the right child.

UNIT-III File Organization

Step 4 If an internal node also gets more keys than
allowed, then we divide it into two equal parts.
•The left part keeps the smaller keys.
•The right part keeps the larger keys.
•The smallest key from the right part becomes the
parent key (moves up to the next level).

UNIT-III File Organization

Step 5 If both leaf and internal nodes are full, split them the same way, and move the
smallest key from the right part to the parent node.

UNIT-III File Organization

Feature B-Tree B++ Tree

Data storage Both internal & leaf nodes Only leaf nodes

Internal nodes Keys + data pointers Keys only

Sequential access Slower Faster (linked leaves)

Range queries Less efficient Very efficient

Index size Larger Smaller

UNIT-III File Organization

UNIT-III File Organization

Hash function
A hash function is a function that takes an input (called a key) and converts it into a fixed-
size number (called a hash value or hash address) which is used to store or find the data in
a hash table.

Simple Example:
If table size = 10 and key = 123
•Hash Function: h(k) = k mod 10
•h(123) = 123 mod 10 = 3

 Data stored at index 3 in the table. Types of Hash
Functions

Division (Modulo) Method

Multiplication Method.

Mid-Square Method

Folding Method

10)123(12
 10
 23
 20
 3 R

UNIT-III File Organization

UNIT-III File Organization

Example
Division (Modulo) Method
Formula: h(k) = k mod m
•Example: Table size m = 10
•Key k = 123 → 123 mod 10 = 3

 Hash address = 3

1.Division (Modulo) Method
1.h(k) = k mod m

2. Take remainder after dividing key by table size.
3. Simple and fast.

UNIT-III File Organization

Example
Formula: h(k) = ⌊ m × (k × A mod 1) ⌋ (A between 0 and 1)
•Example: Table size m = 10, A = 0.618
•Key k = 123

• 123 × 0.618 = 76.114

• Fractional part = 0.114
• 10 × 0.114 = 1.14 → 1 (floor)

 Hash address = 1

2.Multiplication Method
1. Multiply key by a constant A (0 < A < 1), take fractional

part × table size.
2. Reduces clustering.

UNIT-III File Organization

Example
Idea: Square the key and take the middle digits.
•Example: Key k = 123

• 123² = 15129

• Take middle two digits “51”
 Hash address = 51 (or 1 if table size small)

3. Mid-Square Method
1. Square the key and take the middle digits as the hash value.
2. Gives more uniform distribution

UNIT-III File Organization

Types of Hash Functions

4.Folding Method
1. Break the key into parts and add them together

to form the hash value.
2. Works well for large keys.

Example
Idea: Split key into equal parts and add them.
•Example: Key k = 123456, table size m = 100

• Split into parts: 12, 34, 56
• Add: 12 + 34 + 56 = 102
• 102 mod 100 = 2

 Hash address = 2

UNIT-III File Organization

Types of Hashing Approaches

Static Hashing Dynamic Hashing

UNIT-III File Organization

1.Static Hashing
In static hashing, the hash function always generates the same bucket's address.

For example, if we have a data record for employee_id = 107, the hash function is mod-5
which is - H(x) % 5, where x = id.

H(106) % 5 = 1.

UNIT-III File Organization

Types of Operations in Static Hashing
Static hashing keeps a fixed-size hash table. The main operations are:

1.Insertion
•Use the hash function to compute the address for the new key.
•Place the record at that address.
•If a collision occurs, use overflow area or chaining.
• Example: Key 123 → 123 mod 10 = 3 → store at index 3.

2.Search (Retrieval)
•Compute the hash address using the hash function.
•Go to that address and fetch the record.
• Example: To find key 123 → compute 123 mod 10 = 3
→ check index 3.

UNIT-III File Organization

3.Deletion
•Compute the hash address of the key.
•Remove the record from that location (or mark it deleted).
• Example: Key 123 → compute index 3 → delete the entry
there.

UNIT-III File Organization

2.Dynamic Hashing
Dynamic hashing is also known as extendible hashing, used to handle database that
frequently changes data sets. This method offers us a way to add and remove data buckets
on demand dynamically.

Working of Dynamic Hashing

Example: If global depth: k = 2, the keys will be mapped accordingly to the hash index.
K bits starting from LSB will be taken to map a key to the buckets. That leaves us with
the following 4 possibilities: 00, 11, 10, 01.

UNIT-III File Organization

https://www.geeksforgeeks.org/dbms/extendible-hashing-dynamic-approach-to-dbms/
https://www.geeksforgeeks.org/dbms/extendible-hashing-dynamic-approach-to-dbms/

UNIT-III File Organization

1.Extendible Hashing –Extendible Hashing uses a directory of pointers to buckets.
•Each directory entry corresponds to a binary prefix of the hash value.
•When a bucket overflows, it splits, and sometimes the directory doubles.
•This allows fast searching and dynamic growth.

Initial Setup
•Directory has 1 bit (2 entries: 0 and 1).
•Hash function: use binary of h(k) mod 4.
•Buckets:

• Bucket 0: keys ending in 0
• Bucket 1: keys ending in 1

Insert Keys
Let’s insert keys: 1, 2, 3, 4.
•1 → binary 01 → directory 1 → bucket 1
•2 → binary 10 → directory 0 → bucket 0
•3 → binary 11 → directory 1 → bucket 1
•4 → binary 100 → directory 0 → bucket 0 (overflow now)

Dynamic Hashing Approach

UNIT-III File Organization

Bucket Split
•Bucket 0 overflows → split into two buckets (00 and 10).
•Directory now has 2 bits (4 entries: 00, 01, 10, 11).
Redistribute keys:
•2 → 10 → bucket 10
•4 → 100 → bucket 00
Directory now points to:
•00 → bucket A
•01 → bucket 1
•10 → bucket B
•11 → bucket 1

Insert More Keys
Insert 5 (101) → goes to bucket 01
Insert 6 (110) → goes to bucket 10
Insert 7 (111) → goes to bucket 11

0 0 0

0 0 1

0 1 0

0
1
1

1
0
0

1
0
1

UNIT-III File Organization

UNIT-III File Organization

2.Linear Hashing
•Splits one bucket at a time gradually instead of doubling the directory.
•Reduces sudden large changes in memory size.
•Directory is not needed separately; uses a level and a next bucket pointer.
• Example: Each insertion may trigger a single bucket split, not the whole table.

Initial:
h0(k) = k mod 2
Buckets:
[0] →
[1] →
Step 2:
Insert 2,3,4:
Insert 2 → 2 mod 2= 2/2=remainder=0= 0 → goes to bucket 0
Insert 3→ 3 mod 2=2/3=remainder=1= 1→ goes to bucket 1
Insert 4 → 4 mod 2=2/4=remainder=0= 0 → bucket 0 again
[0] → 2,4 (overflow if only 1 record allowed per bucket)
[1] → 3

Split bucket 0 (use h1(k)=k mod 4):
New bucket [2] created
Redistribute:
2 mod 4 =4/2=2→goes to bucket [2]
4 mod 4 = 4/4=remainder=0=0→ stays in bucket [0]
[0] → 4
[1] → 3
[2] → 2

Insert 7,8: 7mod2=1 → goes to bucket [1] ,
8mod2 =0→ goes to bucket [0]
[0] → 4,8 (overflow again)
[1] → 3,7
[2] → 2

a mod b= remainder when a/b

UNIT-III File Organization

In Hashing, hash functions were used to generate hash values.
The hash value is used to create an index for the keys in the hash table.
The hash function may return the same hash value for two or more keys.
When two or more keys have the same hash value, a collision happens.
To handle this collision, we use Collision Resolution Techniques.

Collision Resolution Techniques
There are mainly two methods to handle collision:

1.Separate Chaining

2.Open Addressing

UNIT-III File Organization

Collision Resolution Techniques

UNIT-III File Organization

Rehashing

UNIT-III File Organization

2. Chaining (Separate Chaining)
Chaining is a mechanism in which the hash table is implemented using an array of type
nodes, where each bucket is of node type and can contain a long chain of linked lists to
store the data records.

Given:

•Hash table size = 5

•Hash function: h(key) = key % 5

•Keys to insert: 10, 15, 20, 25, 30, 11

Key Hash Index (key % 5) Inserted At

10 0 Bucket 0 → [10]

15 0 Bucket 0 → [10 → 15]

20 0 Bucket 0 → [10 → 15 → 20]

25 0 Bucket 0 → [10 → 15 → 20 → 25]

30 0 Bucket 0 → [10 → 15 → 20 → 25 → 30]

11 1 Bucket 1 → [11]

UNIT-III File Organization

Index Linked List (Bucket)

0 10 → 15 → 20 → 25 → 30

1 11

2 --

3 --

4 --

Final Hash Table (with separate chaining):

UNIT-III File Organization

3. Open Addressing (Closed Hashing)
This is also called closed hashing this aims to solve the problem of collision by looking out
for the next empty slot available which can store data. It uses techniques like linear
probing, quadratic probing, double hashing, etc.

Example:

•Hash table size = 7

•Hash function: h(key) = key % 7

•Collision resolution: Linear Probing

Insert the keys: 50, 700, 76, 85, 92, 73

UNIT-III File Organization

Key Hash (key % 7) Insert At Collision? Final Position (after probing)

50 50 % 7 = 1 1 No 1

700 700 % 7 = 0 0 No 0

76 76 % 7 = 6 6 No 6

85 85 % 7 = 1 1 Yes 2 (next slot)

92 92 % 7 = 1 1 Yes 3 (after 1 and 2 are filled)

73 73 % 7 = 3 3 Yes 4 (next slot after 3)

UNIT-III File Organization

Example:
•Original table size = 5
•Keys = {12, 18, 13}
•Hash function: h(k) = k mod 5
Positions:
•12 → 2
•18 → 3
•13 → 3 (collision)
Load factor high → Rehash to size 10
New hash: h'(k) = k mod 10
•12 → 2
•18 → 8
•13 → 3

 Now fewer collisions.

Rehashing
Rehashing means changing the size of a hash table and
re-computing (rehashing) the positions of all existing keys
using a new hash function.

•It’s done when the hash table becomes too full (many
collisions) or too empty after deletions.

UNIT-III File Organization

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

