

D
(21223)

B.C.A.-V Sem.

(Printed Pages 4)
Roll No.

18024

B.C.A. Examination, Dec.-2023
Numerical Methods
(BCA-504)

Time : Three Hours / Maximum Marks : 75

Note : Attempt questions from **all** sections as per instructions. Calculator is allowed.

Section-A

Note : Attempt all the **five** questions. Each question carries **3** marks. $3 \times 5 = 15$

1. Using Newton-Raphson method, find an iterative formula to compute $\sqrt[3]{N}$, where N is a positive number.
2. Prove that $E^V = V E = \Delta$, where E is shift operator , V is backward difference operator & Δ is forward difference operator.

P.T.O.

3. Find the first derivative of the function given below at the point $x = 1.2$

x	1	2	3	4	5
f(x)	0	1	5	6	8

4. Solve the following equations by using Gauss-elimination method :

$$x - y + z = 1$$

$$-3x + 2y - 3z = -6$$

$$2x - 5y + 4z = 5$$

5. Perform two iterations of Picard's method to find an approximate solution of the initial value problem

$$y' = x + y^2; y(0) = 1.$$

Section-B

Note : Attempt any **two** questions out of the following three questions. Each question carries 7.5 marks. $2 \times 7.5 = 15$

6. Using method of False position, find a positive root of the equation

$$x^3 - 4x + 1 = 0.$$

18024/2

7. Using Newton's forward interpolation formula, find the cubic polynomial which takes on the following values

x	0	1	2	3	4
y	-1	0	13	50	123

8. Using Simpson's $\left(\frac{1}{3}\right)^{\text{rd}}$ rule, find the value of $\int_1^5 f(x)dx$ given that :

x	1	2	3	4	5
f(x)	10	50	70	80	100

Section-C

Note : Attempt any **three** questions out of the following **five** questions. Each question carries 15 marks. $3 \times 15 = 45$

9. Find a positive root of the equation $2x = 3 + \cos x$ by Bisection method.

10. Using Lagrange's interpolation formula, find the value of y corresponding to $x=2$ from the following table :

x	0	1	3	4
y	5	6	50	105

P.T.O.

18024/3

11. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's $\left(\frac{3}{8}\right)^{\text{th}}$ rule.

12. Solve by Gauss-Seidel method

$$3x+y+z=1$$

$$x+3y-z=11$$

$$x-2y+4z=21.$$

13. Apply Runge-Kutta method fourth order to find an approximate value of y when $x=0.2$, given that

$$\frac{dy}{dx} = x + y^2 \quad \text{& } y=1 \text{ when } x=0$$

(take $h=0.1$) 6.5.81

18024/4