
• Relational Data Model:

• Relational model concepts, relational
constraints,

• relational algebra

• SQL: SQL queries, programming using SQL.

UNIT-IV

UNIT-IV Relational Data Model

. Relational Data Model
A relational data model represents data in the form of tables (relations).
•A relation is a table with rows and columns.
•Each row is a tuple; each column is an attribute.
•Developed by E.F. Codd in 1970.

StudentID Name Age Marks

S101 Shalini 21 85

S102 Rahul 22 90

S103 Anita 20 78

Example Table:

UNIT-IV Relational Data Model

1.Tuple (Row) A tuple is a single record in a table.
Represents one instance of the entity.
Example: (S101, Shalini, 21, 85)

2.Attribute (Column) An attribute is a property or column of a
relation.
Defines the type of data stored.
Example: Name, Age, Marks

3.Domain The domain of an attribute is the set of allowed values for that attribute.
Example: Age domain: 18–30
 Marks domain: 0–100

Relational Model Concepts

UNIT-IV Relational Data Model

4.Degree
•Degree = Number of attributes (columns) in a relation.
•Example: Student table has 4 attributes → Degree = 4

5.Cardinality
•Cardinality = Number of tuples (rows) in a relation.
•Example: Student table has 3 rows → Cardinality = 3

UNIT-IV Relational Data Model

6.Keys
•Keys uniquely identify tuples in a table.

Key Type Description Example

Primary Key (PK) Unique identifier, cannot be NULL StudentID

Candidate Key All possible unique identifiers StudentID, EmailID

Foreign Key (FK) References PK of another table
DeptID in Student referencing
Department table

Composite Key
Combination of attributes to form a
unique key

(CourseID, StudentID)

UNIT-IV Relational Data Model

7. Integrity Rules
•Entity Integrity: Primary key cannot be NULL.
•Referential Integrity: Foreign key must match a primary key in
another table or be NULL.

StudentID (PK) Name Age DeptID (FK)

S101 Shalini 21 D01

S102 Rahul 22 D02

S103 Anita 20 D01

•PK = StudentID → Unique, Not NULL

•FK = DeptID → References Department table

UNIT-IV Relational Data Model

Relational Constraints
Relational constraints are rules applied on a table to maintain data integrity and accuracy.

1.Primary Key (PK)
 Uniquely identifies each row in a table.
•Rules:

• Must be unique.
• Cannot be NULL.

CREATE TABLE Student (
 StudentID INT PRIMARY KEY,
 Name VARCHAR(50),
 Age INT
);

StudentID is the primary key.

UNIT-IV Relational Data Model

2.Foreign Key (FK)
•Definition: A key in one table that references the primary key of another table.
•Purpose: Maintain referential integrity.
•Example:

UNIT-IV Relational Data Model

Department Table

CREATE TABLE Department (
 DeptID INT PRIMARY KEY,
 DeptName VARCHAR(50)
);

•DeptID is the primary key — it uniquely identifies each
department.

Student Table

CREATE TABLE Student (
 StudentID INT PRIMARY KEY,
 Name VARCHAR(50),
 Age INT,
 DeptID INT,
 FOREIGN KEY (DeptID) REFERENCES Department(DeptID)
);

•DeptID in Student is a foreign key.
•It references the DeptID column in the Department table.

3.Unique Constraint
•Definition: Ensures that no two rows have the same value in a column.
•Example:

CREATE TABLE Student (
 StudentID INT PRIMARY KEY,
 Email VARCHAR(50) UNIQUE
);

Email must be unique for each student.

UNIT-IV Relational Data Model

4.Not Null Constraint
•Definition: Ensures that a column cannot have NULL values.
•Example:

CREATE TABLE Student (
 StudentID INT PRIMARY KEY,
 Name VARCHAR(50) NOT NULL
);

UNIT-IV Relational Data Model

5.Check Constraint
•Definition: Ensures that values in a column satisfy a specific condition.
•Example:

CREATE TABLE Student (
 StudentID INT PRIMARY KEY,
 Name VARCHAR(50),
 Age INT CHECK (Age >= 18)
);

6. Default Constraint
•Definition: Provides a default value for a column if none is
specified.
•Example:

CREATE TABLE Student (
 StudentID INT PRIMARY KEY,
 Name VARCHAR(50),
 Status VARCHAR(10) DEFAULT 'Active'
);

UNIT-IV Relational Data Model

Relational Constraints
Constraints ensure data integrity.

UNIT-IV Relational Data Model

Constraint Purpose Example Column

Primary Key Unique + Not NULL StudentID

Foreign Key Reference another table DeptID

Unique No duplicate values Email

Not Null Column must have a value Name

Check Values satisfy condition Age >= 18

Default Provide default value if not specified Status = 'Active'

Relational Algebra (RA)
Relational Algebra is a procedural query language that uses a set of operations to
manipulate and retrieve data from relations (tables) in a database.

It works on one or more relations to produce another relation.

Basic Operations of Relational Algebra

UNIT-IV Relational Data Model

StudentID Name Age DeptID

1 Aditi 20 101

2 Bharat 17 102

3 Chaya 21 101

4 Deep 19 103

Student Table

DeptID DeptName

101 ComputerSci

102 Commerce

103 Arts

Department Table

StudentID Name

3 Chaya

4 Deep
Another Table for Examples: Alumni

UNIT-IV Relational Data Model

Relational Algebra Operations with Examples

StudentID Name Age DeptID

1 Aditi 20 101

3 Chaya 21 101

4 Deep 19 103

1.Selection (σ)
Filter rows based on a condition.
Expression:
σ Age > 18 (Student)

Result: (students older than 18)

2.Projection (π)
Choose specific columns (attributes).
Expression:
π Name, Age (Student)

Name Age

Aditi 20

Bharat 17

Chaya 21

Deep 19

UNIT-IV Relational Data Model

3. Union (∪)
Combine two tables with same structure, removing duplicates.
Expression:
π StudentID, Name (Student) ∪ Alumni

StudentID Name

1 Aditi

2 Bharat

3 Chaya

4 Deep

4. Set Difference (−)
Rows present in one relation but not in another.
Expression:
π StudentID, Name (Student) − Alumni

Result: (Students not Alumni)

StudentID Name

1 Aditi

2 Bharat

UNIT-IV Relational Data Model

5. Cartesian Product (×)
Combine each row of one table with each row of another table.
Expression:
Student × Department

Result: (Only first few rows shown)

StudentID Name Age DeptID DeptID DeptName

1 Aditi 20 101 101 ComputerSci

1 Aditi 20 101 102 Commerce

… … … … … …

StudentID Name Age DeptID

1 Aditi 20 101

DeptID DeptName

101 ComputerSci

102 Commerce

103 Arts

UNIT-IV Relational Data Model

6. Rename (ρ)
Rename a table or its attributes.
Expression:
ρ S(Student)

This renames Student relation to S.
7. Intersection (∩)
Common rows between two tables.
Expression:
π StudentID, Name (Student) ∩ Alumni

StudentID Name

3 Chaya

4 Deep

UNIT-IV Relational Data Model

8. Natural Join (⋈)
Combines rows from two tables based on same attribute name.
Expression:
Student ⋈ Department

StudentID Name Age DeptID DeptName

1 Aditi 20 101 ComputerSci

2 Bharat 17 102 Commerce

3 Chaya 21 101 ComputerSci

4 Deep 19 103 Arts

UNIT-IV Relational Data Model

9. Theta Join (⋈θ)
Join based on a specific condition.
Expression:
Student ⋈ Student.DeptID =
Department.DeptID AND Age>18

Result: (only students Age>18 joined with Dept)

StudentID Name Age DeptID DeptName

1 Aditi 20 101 ComputerSci

3 Chaya 21 101 ComputerSci

4 Deep 19 103 Arts

UNIT-IV Relational Data Model

10. Division (÷)
Used to find tuples in one relation related to all tuples in another.
Example Scenario:
•Takes(StudentID, CourseID) – which student took which course
•AllCourses(CourseID) – all required courses
Expression:
Takes ÷ AllCourses

→ Students who took all courses listed in AllCourses.
(Division result depends on data; it returns StudentIDs who match all courses.)

UNIT-IV Relational Data Model

Operator Symbol Description Example

1. Selection σ (sigma)
Selects rows (tuples) satisfying a
condition.

σ Age>18 (Student) – selects
students older than 18.

2. Projection π (pi) Selects columns (attributes).
π Name,Age (Student) – shows
only Name and Age.

3. Union ∪
Combines tuples from two
relations (no duplicates).

Student ∪ Alumni – all students or
alumni.

4. Set Difference −
Tuples in one relation but not in
another.

Student − Alumni – students not
alumni.

5. Cartesian Product ×
Combines each tuple of one
relation with each tuple of
another.

Student × Course – all
combinations.

6. Rename ρ (rho)
Renames the relation or its
attributes.

ρ S(Student) – renames Student
table to S.

UNIT-IV Relational Data Model

Operator Symbol Description Example

7. Intersection ∩
Tuples common to both
relations.

Student ∩ Alumni

8. Natural Join ⋈
Combines related tuples
from two relations on
common attributes.

Student ⋈ Department

9. Theta Join ⋈θ
Join using a specific
condition.

Student ⋈
(Student.DeptID=Depart
ment.DeptID)

10. Division ÷
Finds tuples in one
relation that are related
to all tuples in another.

R ÷ S

Additional Operations

UNIT-IV Relational Data Model

SQL: SQL queries, programming using SQL

1. SQL
SQL (Structured Query Language) is a standard language used to interact with a database.
It allows you to create, modify, manage, and retrieve data from relational databases.

•SQL is non-procedural, meaning you specify what you want, not how to get it.

•It is used in systems like MySQL, Oracle, SQL Server, PostgreSQL, etc.

https://onecompiler.com

2. Types of SQL Commands
SQL commands are divided into five main categories:

Type Full Form Purpose Example

DDL Data Definition Language
Define or modify database
structure

CREATE TABLE, ALTER TABLE,
DROP TABLE

DML Data Manipulation Language Manipulate data inside tables INSERT, UPDATE, DELETE

DQL Data Query Language Query or retrieve data SELECT

DCL Data Control Language Control access and permissions GRANT, REVOKE

TCL Transaction Control Language Manage transactions
COMMIT, ROLLBACK,
SAVEPOINT

SQL: SQL queries, programming using SQL

Types of
SQL

DML DQL DCL TCL

DDL

SQL: SQL queries, programming using SQL

Command Purpose Example

CREATE Create a table or database
CREATE TABLE Student (ID INT, Name
VARCHAR(50), Age INT);

ALTER Modify table structure ALTER TABLE Student ADD COLUMN Marks INT;

DROP Delete table or database DROP TABLE Student;

TRUNCATE Remove all rows from table (faster than DELETE) TRUNCATE TABLE Student;

1. DDL (Data Definition Language)
Used to define or modify database structure

SQL: SQL queries, programming using SQL

Feature CHAR VARCHAR

Length Fixed Variable

Storage Pads with spaces Stores only actual data

Speed Faster for fixed data Slightly slower

Use Case Codes, short fixed text Names, addresses, long text

Example CHAR(5) → 'Hi ' VARCHAR(5) → 'Hi'

SQL: SQL queries, programming using SQL

SQL: SQL queries, programming using SQL

1. DDL (Data Definition Language)

1.Create Database

CREATE DATABASE CollegeDB;

2.Create Table

CREATE TABLE Student (
 ID INT PRIMARY KEY,
 Name VARCHAR(50),
 Age INT,
 Marks INT
);

3. Alter Table (Add Column)

ALTER TABLE Student ADD COLUMN Grade CHAR(1);

4. Alter Table (Modify Column)

ALTER TABLE Student MODIFY COLUMN Age SMALL INT;

5. Drop Table

DROP TABLE Student;

6. Truncate Table

TRUNCATE TABLE Student;

2. DML (Data Manipulation Language)
Used to manipulate data in tables.

Command Purpose Example

INSERT Add new records
INSERT INTO Student (ID, Name, Age) VALUES (1, 'Shalu',
21);

UPDATE Modify existing data UPDATE Student SET Age = 22 WHERE ID = 1;

DELETE Remove records DELETE FROM Student WHERE ID = 1;

SQL: SQL queries, programming using SQL

2. DML (Data Manipulation Language)
1.Insert Single Record

INSERT INTO Student (ID, Name, Age, Marks)
VALUES (1, 'Shalini', 21, 85);

2.Insert Multiple Records

INSERT INTO Student (ID, Name, Age, Marks) VALUES
(2, 'Rahul', 22, 90),
(3, 'Anita', 20, 78);

3.Update Data

UPDATE Student SET Marks = 88 WHERE ID = 1;

4.Delete Record

DELETE FROM Student WHERE ID = 3;

SQL: SQL queries, programming using SQL

3. DQL (Data Query Language)
Used to fetch data from tables.

SQL: SQL queries, programming using SQL

Command Purpose Example

SELECT Retrieve data
SELECT * FROM Student; SELECT Name, Age FROM Student WHERE
Age > 20;

WHERE Filter rows SELECT * FROM Student WHERE Marks > 80;

ORDER BY Sort data SELECT * FROM Student ORDER BY Name ASC;

GROUP BY Group rows for aggregation SELECT Age, COUNT(*) FROM Student GROUP BY Age;

HAVING Filter groups
SELECT Age, COUNT(*) FROM Student GROUP BY Age HAVING
COUNT(*) > 1;

SQL: SQL queries, programming using SQL

SELECT * FROM Student;

1.Select All Columns 2.Select Specific Columns

SELECT Name, Marks FROM Student;

3.Select with Condition

SELECT * FROM Student WHERE Marks > 80;

4.Select with AND / OR

SELECT * FROM Student WHERE Age > 20 AND Marks > 80;
SELECT * FROM Student WHERE Age < 21 OR Marks > 85;

5.Order By (Ascending / Descending)

SELECT * FROM Student ORDER BY Marks DESC;
SELECT * FROM Student ORDER BY Name ASC;

6.Group By

SELECT Age, COUNT(*) AS Count FROM Student GROUP BY Age;

SQL: SQL queries, programming using SQL

7.Having (Filter Groups)

SELECT Age, COUNT(*) AS Count
FROM Student
GROUP BY Age
HAVING COUNT(*) > 1;

4. DCL (Data Control Language)
Used to control access/permissions.

Command Purpose Example

GRANT Give permission GRANT SELECT ON Student TO User1;

REVOKE Remove permission REVOKE SELECT ON Student FROM User1;

SQL: SQL queries, programming using SQL

GRANT SELECT, INSERT ON Student TO User1;

1.Grant Permission 2.Revoke Permission

REVOKE INSERT ON Student FROM User1;

5. TCL (Transaction Control Language)
Used to manage transactions.

Command Purpose Example

COMMIT Save transaction permanently COMMIT;

ROLLBACK Undo transaction ROLLBACK;

SAVEPOINT Set a point to rollback to SAVEPOINT sp1;

SQL: SQL queries, programming using SQL

1.Commit Transaction

COMMIT;

2.Rollback Transaction

ROLLBACK;

3.Savepoint

SAVEPOINT sp1;
ROLLBACK TO sp1;

UNIT-IV Relational Data Model

Output

CREATE TABLE students (
 id INTEGER PRIMARY KEY,
 name TEXT,
 course TEXT,
 marks INTEGER
);

INSERT INTO students (id, name, course, marks) VALUES
(1, 'Asha', 'DBMS', 85),
(2, 'Ravi', 'DBMS', 72),
(3, 'Sita', 'AI', 91),
(4, 'Rahul', 'DBMS', 66),
(5, 'Meena', 'AI', 78);

SELECT * FROM students;

id name course marks
1 Asha DBMS 85

2 Ravi DBMS 72
3 Sita AI 91
4 Rahul DBMS 66
5 Meena AI 78

SQL Server Download

SELECT * FROM students;
SELECT name, course, marks
FROM students
WHERE marks > 75;

SELECT *
FROM students
ORDER BY marks DESC;

SQL: SQL queries, programming using SQL

CREATE TABLE Student (
 ID INT PRIMARY KEY,
Name VARCHAR(50),
Age INT,
 Marks INT);
INSERT INTO Student (ID, Name, Age, Marks)
VALUES (2, 'Rahul', 22, 90),
(3, 'Anita', 20, 78);
SELECT * FROM Student;

ID Name Age Marks

2 Rahul 22 90

3 Anita 20 78

OUTPUT

SQL: SQL queries, programming using SQL

CREATE TABLE students (
 id INTEGER PRIMARY KEY,
 name TEXT,
 course TEXT,
 marks INTEGER
);

INSERT INTO students (id, name, course, marks)
VALUES
(1, 'Asha', 'DBMS', 85),
(2, 'Ravi', 'DBMS', 72),
(3, 'Sita', 'AI', 91),
(4, 'Rahul', 'DBMS', 66),
(5, 'Meena', 'AI', 78);
SELECT * FROM Student;

-- Step 3: View all data (SELECT)
SELECT * FROM students;
-- Step 4: Show students with marks greater than 75
(WHERE)
SELECT name, course, marks
FROM students
WHERE marks > 75;

-- Step 5: Sort students by marks (ORDER BY)
SELECT * FROM students
ORDER BY marks DESC;

-- Step 6: Update marks (UPDATE)
UPDATE students
SET marks = 95
WHERE name = 'Ravi';

SQL: SQL queries, programming using SQL

Step 11: Update new column
UPDATE students
SET city = 'Delhi'
WHERE course = 'DBMS';

UPDATE students
SET city = 'Mumbai'
WHERE course = 'AI';

-- Step 12: Display table with city
SELECT * FROM students;

-- Step 13: Aggregate functions (GROUP BY)
SELECT course, AVG(marks) AS avg_marks
FROM students
GROUP BY course;

-- Step 7: Check the update
SELECT * FROM students WHERE name = 'Ravi';

-- Step 8: Delete a record (DELETE)
DELETE FROM students
WHERE name = 'Rahul';

-- Step 9: Check table after deletion
SELECT * FROM students;

-- Step 10: Add a new column (ALTER TABLE)
ALTER TABLE students ADD COLUMN city TEXT;

SQL: SQL queries, programming using SQL

Step 14: Create second table for JOIN example
CREATE TABLE courses (
 course TEXT PRIMARY KEY,
 teacher TEXT
);
INSERT INTO courses VALUES
('DBMS', 'Dr. Neha'),
('AI', 'Dr. Rakesh’);

Step 15: JOIN two tables
SELECT s.name, s.course, s.marks, c.teacher
FROM students s
JOIN courses c
ON s.course = c.course;

Step 16: Show top scorer (LIMIT)
SELECT name, course, marks
FROM students
ORDER BY marks DESC
LIMIT 1;

SQL: SQL queries, programming using SQL

COMPLETE SQL SCRIPT (DDL, DML, DQL, DCL, TCL)

-- CREATE DATABASE (DDL)

CREATE DATABASE CollegeDB;

-- USE DATABASE

USE CollegeDB;

-- CREATE TABLE (DDL)

CREATE TABLE Students (

 id INT PRIMARY KEY,

 name VARCHAR(50),

 course VARCHAR(50),

 marks INT

);

-- INSERT VALUES (DML)

INSERT INTO Students (id, name, course,

marks) VALUES

(1, 'Asha', 'DBMS', 85),

(2, 'Ravi', 'DBMS', 72),

(3, 'Sita', 'AI', 91),

(4, 'Rahul', 'DBMS', 66),

(5, 'Meena', 'AI', 78);

SQL: SQL queries, programming using SQL

-- SELECT DATA (DQL)

SELECT * FROM Students;

-- UPDATE DATA (DML)

UPDATE Students SET marks = 88 WHERE name = 'Ravi';

-- DELETE A RECORD (DML)

DELETE FROM Students WHERE name = 'Rahul';

-- SELECT WITH CONDITION (DQL)

SELECT * FROM Students WHERE marks > 80;

-- ALTER TABLE (DDL)

ALTER TABLE Students ADD email VARCHAR(100);

SQL: SQL queries, programming using SQL

-- MODIFY COLUMN TYPE (DDL)

ALTER TABLE Students ALTER COLUMN marks TYPE FLOAT;

-- RENAME COLUMN (DDL)

ALTER TABLE Students RENAME COLUMN name TO student_name;

-- DROP COLUMN (DDL)

ALTER TABLE Students DROP COLUMN email;

-- RENAME TABLE (DDL)

RENAME TABLE Students TO College_Students;

-- TRUNCATE TABLE (DDL)

TRUNCATE TABLE College_Students;

SQL: SQL queries, programming using SQL

◼ DROP TABLE (DDL)

DROP TABLE College_Students;

-- DROP DATABASE (DDL)

DROP DATABASE CollegeDB;

-- ==========================

-- DATA CONTROL LANGUAGE

-- ==========================

-- GRANT PERMISSION (DCL)

GRANT SELECT, INSERT ON CollegeDB.* TO 'user1'@'localhost';

-- REVOKE PERMISSION (DCL)

REVOKE INSERT ON CollegeDB.* FROM 'user1'@'localhost’;

SQL: SQL queries, programming using SQL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

